----------
X-Sun-Data-Type: text
X-Sun-Data-Description: text
X-Sun-Data-Name: text
X-Sun-Charset: us-ascii
X-Sun-Content-Lines: 44
--------------------------------------------------------------------------------
directly from my Sun workstation ULTRA 1 under SunOS 5.5.1 and CDE V 1.0.2
--------------------------------------------------------------------------------
An alle Mathematica-Kundigen ! Stuttgart, den 14. Januar 1999
Numerische Simulation einer elektrischen Leitung
------------------------------------------------
Eine elektrische Leitung werde durch die Leitungsgleichungen im Zeitbereich
beschrieben. Diese Leitung werde von einer Spannungsquelle Ug[t] ueber einen
Widerstand Rg getrieben und sei am anderen Ende bei xl mit dem Widerstand Rload
belastet.
NDSolve fuer ein System partieller Differential-Gleichungen
-----------------------------------------------------------
Dieses Problem fuehrt auf ein System partieller Differential-Gleichungen,
das ich versuchte, mit NDSolve zu loesen.
Leider klappt es nicht.
Das entsprechende Notebook "leitung_dmug.nb" haenge ich an diese Mail an.
Woran liegt das ?
Vielen Dank fuer jeden Hinweis !
Mit freundlichen Gruessen
Gunter Woysch File : mail_99/dmug_991014_email_to
--------------------------------------------------------------------------------
Dr. G. Woysch, Alcatel Telecom , ASIC Technology and Qualification
Alcatel SEL AG , Dept. ZFZ/WH, D 70430 Stuttgart, Germany
Phone +49 711 821-32176 Fax +49 711 821-32455 email gwoysch@rcs.sel.de
--------------------------------------------------------------------------------
----------
X-Sun-Data-Type: default
X-Sun-Data-Description: default
X-Sun-Data-Name: leitung_dmug.nb
X-Sun-Charset: us-ascii
X-Sun-Content-Lines: 343
(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 8368, 254]*)
(*NotebookOutlinePosition[ 9188, 282]*)
(* CellTagsIndexPosition[ 9144, 278]*)
(*WindowFrame->Normal*)
Notebook[{
Cell["Elektrische Signale auf Verbindungsleitungen", "Title"],
Cell["leitung_dmug.nb", "Section"],
Cell[CellGroupData[{
Cell["\<\
Leitungsgleichungen im Zeitbereich
\
\>", "Section"],
Cell[CellGroupData[{
Cell[BoxData[
\(\(Ueqn\ = \n\t
\(-\ \[PartialD]\_x\ u[x, t]\)\ == \
Rl\ i[x, t]\ + \ Ll\ \[PartialD]\_t\ i[x, t]\ \)\)], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
RowBox[{
SuperscriptBox["u",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}], "==",
RowBox[{\(Rl\ i[x, t]\), "+",
RowBox[{"Ll", " ",
RowBox[{
SuperscriptBox["i",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}]}]}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(\(Ieqn\ = \n\t
\(-\ \[PartialD]\_x\ i[x, t]\)\ == \
Gl\ u[x, t]\ + \ Cl\ \[PartialD]\_t\ u[x, t]\ \)\)], "Input"],
Cell[BoxData[
\(General::"spell1" \( : \ \)
"Possible spelling error: new symbol name \"\!\(Ieqn\)\" is similar to \
existing symbol \"\!\(Ueqn\)\"."\)], "Message"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
RowBox[{
SuperscriptBox["i",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}], "==",
RowBox[{\(Gl\ u[x, t]\), "+",
RowBox[{"Cl", " ",
RowBox[{
SuperscriptBox["u",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}]}]}]], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Parameter-Definition", "Section"],
Cell[BoxData[
\(\(Ll\ = \ \ \ \ 1\ *10^\(-6\)\ \ \ \ \ \ \ \ ;
\ \ (*\ Induktivitaetsbelag\ pro\ Laenge\ *) \n
Cl\ = \ \ \ \ 1\ *\ 10^\(-12\)\ \ \ \ \ ;
\ \ (*\ Kapazitaetsbelag\ pro\ Laenge\ *) \n
Rl\ = \ 10\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ;
\ \ (*\ Widerstandsbeleg\ pro\ Laenge\ \ *) \n
Gl\ = \ \ \ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ;
\ \ \ (*\ Leitfaehigkeitsbelag\ pro\ Laenge\ *) \n
Rg\ = \ 50\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ;
\ \ \ (*\ Generatorinnenwiderstand\ *) \n
Rload\ = 50\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ;
\ \ \ (*\ Lastwiderstand\ *) \n
xl\ = \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ;
\ \ \ \ (*\ Leitungslaenge\ *) \)\)], "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell["Treiber-Spannung", "Section"],
Cell[CellGroupData[{
Cell[BoxData[
\(Ug[\ t\ ]\ = \ Sin[\ 2\ Pi\ 10^6\ t\ ]\)], "Input"],
Cell[BoxData[
\(Sin[2000000\ \[Pi]\ t]\)], "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["System partieller Differential-Gleichungen", "Section"],
Cell[CellGroupData[{
Cell[BoxData[
\(solution\ = \ \n\t
NDSolve[\n\t\t\ {\ Ueqn, \n\t\t\t\ \ Ieqn, \n\t\t\t\ \ \ u[x, 0] == 0,
\n\t\t\t\ \ \ i[x, 0] == 0, \n\t\t\t\ \ \
u[0, t] == Ug[\ t\ ]\ - \ Rg\ i[0, t], \n\t\t\t\ \ \
u[1, t] == Rload\ \ *\ i[1, t]\n\t\t\ }, \n\t\t{\ u, i}, \ \n
\t\t{\ x, \ 0, \ xl\ }, \ \n\t\t{t, \ 0, \ 10^\(-5\)\ }\ \n\t]\)],
"Input"],
Cell[BoxData[
\(Solve::"svars" \( : \ \)
"Equations may not give solutions for all \"solve\" variables."\)],
"Message"],
Cell[BoxData[
\(NDSolve::"deql" \( : \ \)
"The first argument must have both an equation and an initial \
condition."\)], "Message"],
Cell[BoxData[
\(NDSolve::"deql" \( : \ \)
"The first argument must have both an equation and an initial \
condition."\)], "Message"],
Cell[BoxData[
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{
SuperscriptBox["u",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}], "==",
RowBox[{\(10\ i[x, t]\), "+",
FractionBox[
RowBox[{
SuperscriptBox["i",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}],
"1000000"]}]}], ",",
RowBox[{
RowBox[{"-",
RowBox[{
SuperscriptBox["i",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}]}], "==",
FractionBox[
RowBox[{
SuperscriptBox["u",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(x, t\), "]"}],
"1000000000000"]}], ",", \(u[x, 0] == 0\), ",",
\(i[x, 0] == 0\), ",",
\(u[0, t] == \(-50\)\ i[0, t] + Sin[2000000\ \[Pi]\ t]\), ",",
\(u[1, t] == 50\ i[1, t]\)}], "}"}], ",", \({u, i}\), ",",
\({x, 0, 1}\), ",", \({t, 0, 1\/100000}\)}], "]"}]], "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(?? NDSolve\)], "Input"],
Cell[BoxData[
\("NDSolve[eqns, y, {x, xmin, xmax}] finds a numerical solution to the \
ordinary differential equations eqns for the function y with the independent \
variable x in the range xmin to xmax. NDSolve[eqns, y, {x, xmin, xmax}, {t, \
tmin, tmax}] finds a numerical solution to the partial differential equations \
eqns. NDSolve[eqns, {y1, y2, ... }, {x, xmin, xmax}] finds numerical \
solutions for the functions yi."\)], "Print"],
Cell[BoxData[
InterpretationBox[
StyleBox[\(Attributes[NDSolve]\ = \ {Protected}\n\ \n
Options[NDSolve]\ =
\ {AccuracyGoal\ -> \ Automatic, \ Compiled\ -> \ True, \
DifferenceOrder\ -> \ Automatic, \
InterpolationPrecision\ -> \ Automatic, \
MaxRelativeStepSize\ -> \ 1, \ MaxSteps\ -> \ Automatic, \
MaxStepSize\ -> \ Infinity, \ Method\ -> \ Automatic, \
PrecisionGoal\ -> \ Automatic, \ SolveDelayed\ -> \ False, \
StartingStepSize\ -> \ Automatic, \ StoppingTest\ -> \ None, \
WorkingPrecision\ -> \ 16}\),
ShowStringCharacters->True,
NumberMarks->True],
InputForm[
Definition[ NDSolve]],
Editable->True,
AutoDelete->True]], "Print"]
}, Open ]]
}, Open ]]
},
FrontEndVersion->"X 3.0",
ScreenRectangle->{{0, 1152}, {0, 900}},
WindowSize->{520, 600},
WindowMargins->{{177, Automatic}, {Automatic, 102}},
PrintingPageRange->{Automatic, Automatic},
PrintingOptions->{"PaperSize"->{597.562, 842.375},
"PaperOrientation"->"Portrait",
"Magnification"->1},
StyleDefinitions -> "Classroom.nb"
]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file. The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 61, 0, 94, "Title"],
Cell[1773, 51, 34, 0, 57, "Section"],
Cell[CellGroupData[{
Cell[1832, 55, 63, 4, 101, "Section"],
Cell[CellGroupData[{
Cell[1920, 63, 151, 3, 63, "Input"],
Cell[2074, 68, 479, 14, 49, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2590, 87, 151, 3, 63, "Input"],
Cell[2744, 92, 175, 3, 39, "Message"],
Cell[2922, 97, 479, 14, 49, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[3450, 117, 39, 0, 57, "Section"],
Cell[3492, 119, 804, 14, 143, "Input"]
}, Open ]],
Cell[CellGroupData[{
Cell[4333, 138, 35, 0, 57, "Section"],
Cell[CellGroupData[{
Cell[4393, 142, 72, 1, 47, "Input"],
Cell[4468, 145, 56, 1, 47, "Output"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[4573, 152, 61, 0, 57, "Section"],
Cell[CellGroupData[{
Cell[4659, 156, 394, 7, 239, "Input"],
Cell[5056, 165, 133, 3, 39, "Message"],
Cell[5192, 170, 143, 3, 39, "Message"],
Cell[5338, 175, 143, 3, 39, "Message"],
Cell[5484, 180, 1511, 37, 182, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[7032, 222, 43, 1, 47, "Input"],
Cell[7078, 225, 444, 6, 135, "Print"],
Cell[7525, 233, 815, 17, 167, "Print"]
}, Open ]]
}, Open ]]
}
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)
|