| Frühere | Chronologischer Index | Spätere | ||
| Vorherige | Thematischer Index | Nächste |
Hi all,that should work, but let's make it step by step into a one-liner and detect some unpleasant behavior of DrawPD[].
In[6]:= Head[AllKnots[12, NonAlternating]]
Out[6]= List
AllKnots[] is a List[], one can Select[] directly on it as usual
Select[AllKnots[12,
NonAlternating], (PositiveCrossings[#] == NegativeCrossings[#]) &]
In[7]:= Select[AllKnots[12, NonAlternating], (PositiveCrossings[#] ==
NegativeCrossings[#]) &] // Length
Out[7]= 107
and plot
In[5]:= GraphicsGrid[
ArrayReshape[
TimeConstrained[DrawPD[#, {Gap -> 0.025}], 20] & /@
Select[AllKnots[12,
NonAlternating], (PositiveCrossings[#] ==
NegativeCrossings[#]) &], {Ceiling[107/4], 4}]]
to reach at the result, a part of it is in the picture in the appendix. As
you see it has some $Aborted entries because the TimeConstrained[] was not
matched by DrawPD[] which is in a way outrageous (first I run it without
TimeConstrained[] and this 107 knot picture consumed more than 3.5 hours
CPU time ... arrggghhhh).
One of the misbehaving knots under DrawPD[] is
In[8]:= (* das hat einen Fehler *)
DrawPD[Knot[12, NonAlternating, 873], {Gap -> 0.025}]
Out[8]= $Aborted
which has been aborted after minutes of running time by hand.
So, not to research knots, but the work of programmers, how much of
$Aborted one has to face here?
In[11]:= Length[
Select[TimeConstrained[DrawPD[#, {Gap -> 0.025}], 20] & /@
Select[AllKnots[12,
NonAlternating], (PositiveCrossings[#] ==
NegativeCrossings[#]) &], # === $Aborted &]]
Out[11]= 9
9 out of 107 is a 8.41% performance fail (at least). You could try to get
in touch with the package developers or find out how long it takes to
DrawPD[Knot[12, NonAlternating, 873], {Gap -> 0.025}].
In[14]:= DrawPD[Knot[12, NonAlternating, 873]]During evaluation of In[14]:= KnotTheory::credits: DrawPD was written by Emily Redelmeier at the University of Toronto in the summers of 2003 and 2004.
Out[14]= $Aborted Best regards Udo.On Fri, 27 Jul 2018 14:16:20 +0200, Peter via demug <demug@XXXXXXX.ch> wrote:
Hallo Stephan, versuchen Sie doch mal: For[i = 1, i <= lo, i++, Print@Show[DrawPD[out[[i]], {Gap -> 0.025}]]] bzw. For[i = 1, i <= lo, i++, Print[Show[DrawPD[out[[i]], {Gap -> 0.025}]]]] das sollte funktionieren Grüße, Peter Am 27.07.2018 um 09:04 schrieb Stephan Rosebrock via demug:... and then Show[DrawPD[out[[1]], {Gap -> 0.025}]] Everything works fine. But For[i = 1, i <= lo, i++, Show[DrawPD[out[[i]], {Gap -> 0.025}]]] shows no output at all. I don't understand that. Do you have an idea? Best wishes Stephan_______________________________________________ DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch http://www.mathematica.ch/mailman/listinfo/demug Archiv: http://www.mathematica.ch/archiv.html
knotTheoryWithAborts.PNG
Description: PNG image
_______________________________________________ DMUG Deutschsprachiges Mathematica-Forum demug@XXXXXXX.ch http://www.mathematica.ch/mailman/listinfo/demug Archiv: http://www.mathematica.ch/archiv.html
| Frühere | Chronologischer Index | Spätere | ||
| Vorherige | Thematischer Index | Nächste |
DMUG-Archiv, http://www.mathematica.ch/archiv.html